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ESTIMATION OF THE SOLUTIONS OF LINEAR STOCHASTIC INTEGRAL EQUATIONS* 

V.B. KOUIANOVSKII and L.E. SBAIEBET 

The problem of the optimal estimate (filtering) (optimal in the mean- 
square sense) of a partially observed process specified by a linear 
stochastic Volterra equation is solved. Numerical examples are given. 

The problemoffiltering for systems with discrete delay has been the subject of many 
investigations. Nevertheless, in a number of problems in control , aeroautoelasticity, the 
mechanics of a continuous medium etc., when constructing a model of different technical 
devices, equations arise inlwhich Stieltjes integrals are used to describe the aftereffect 
/l-4/. These equations also contain systems with discrete delay as special cases. The 
approach used below to solve the filtering problem is based on an investigation of the dual 
problem of optimal control, which is well-known in the case of systems with discrete delay. 
An important difference in the case considered here is the fact that the dual problem is 
described by integral and not differential equations. This leads to the need to develop and 
use different conditions of the optimality of the dual problem. 

1. Formulation of the problem. We will consider the problem of the optimal estimate 
(optimal in the mean-square sense) m(T) of the vector Z(T), described by the equation 

5 0) = xo + i [d,K (t, $)I x (s) + f 00 (s) Go (s) 
0 0 

x(t) E R,, t E [O, Tl 

(1.1) 

The observations g(t) E R,, 0 < t< T satisfy the relation 

dy (t) = A (t)z (t - h)dt + u1 (t)d& (t), x (s) = 0, --h < s < 0 (1.2) 
The random vector x,, has a non-degenerate Gaussian probability distribution with zero 

expectation, specified by the covariance matrix D, = RI x0x0’ (the prime denotes transposition), 
and is independent of the mutually independent standard Wiener processes 5, (t) and 51 (t). 
whose dimensions are arbitrary. The presence of delay h>O in the measurement channel (1.2) 
is due to the finiteness of the time required to make the observations and to process the 
results of these observations. The matrices co, cl, A, K are piecewise continuous, and the 
elements of the matrix K (t,s) have a bounded variation with respect to SE [O, T] uniformly 
with respect to t E IO, Tl . The first integral on the right-hand side of (1.1) is understood 
in the Stieltjes sense, while the stochastic integral is understood in the Ito sense. We will 
put Ni = nisi'. The noise in the measurements (1.2) isnon-degenerate, i.e. the matrix N,(t) 
is uniformly positive definite. For the further development it is convenient to assume that 
all the coefficients in (1.1) and (1.2) outside the interval [O, T] are zero. 

It is well-known that m(T) is equal to the conditional expectation: m(T) = M(x (T)/GT), 
where GT is the minimum c-algebra, generated by the process y(t), O,< t< T. In this case, 
in view of the fact that the combined probability density of the process (x (t)? Y (Q) is 
Gaussian, the following representation holds /5, 6/: 

m (T) = s u (t) dy (t) 
0 

(1.3) 

(the deterministic matrix u(t)remains to be defined). 

2. The dual problem of optimal control. We will construct a problem of optimal 
control, the solution of which defines the kernel u(t)of estimate (1.3). Since estimate (1.3) 
is optimal in the mean-square, the matrix u(t)should minimize the functional 

J(u)=M Is(T)-[ u(t)dy(t$ 
0 
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which is the error of the estimation. We will transform this functional. We will represent 
the solution of Eq.tl.1) in the form 

The deterministic matrix Q(t,s) is such that Q (t,t) = I, where I is the unit matrix, 
* (G s) = 0 when s>tand 

We substitute (2.2) and (1.2) into (2.11, giving 

and we introduce the matrix 

a(s)=*(T, s) - u (t) A (t) 9 (t - h, s) dt, a (if’) = 1 (2.3) 
4th 

In view of (2.3) and the properties of the stochastic Ito integrals, we obtain (tr stands 
for the trace of the matrix) 

J(U)=Rlla(0)xo -+ T a(S)u*(s)dto(S) - s’uisu,ow~l”= 
0 0 

tr [u (0) ~,a’ (0) -t- f (a (t) LV& (t) CY’ 0) -t- u (t) N, (t) u’ (0) dt] 
0 

(2.4) 

Hence, the problem of determining the best estimate, in the mean-square sense, of the 
qu~tityx(~)reduces to problem(2.3), (2.4) of the optimal control of the deterministic matrix 
process aft) with the quadratic criterion of quality (2.4). After the optimal control ucl(t} 
of problem (2.31, (2.4) is obtained, the best estimate m(T) ofthequantity r (T)is defined 
by Bq.tl.3) for u(t) = uo(t). and the error of the estimationisequalto J(u,). 

Notes. lo. A similar method was employed in /7/ to solve the problem of optimal filtering 
for stochastic differential equations with delay. Another approach to the filtering of linear 
integral equations was proposed in /8/. Note that as in /9/ we can also write the dual control 
problem of the form (2.3), (2.4) for the case of several delays in the measurement channel, and 
also for filtered fcoloured) or correlated excitations 5,, and &. 

20. If in Eqs.(l.l), (1.2) we put 

we obtain the formulation of the Ralman-Bucy filtering problem /S/. We will show how the 
equation of the Balman-Bucy filter is obtained from the relations derived above, When con- 
ditions (2.5) are satisfied, the function rp in representation (2.2) reduces to the fundamental 
matrix of the ordinary differential equation I.= BX. Bq.(2.3) for the process a(t) takes the 
form 

a' (t) = -a (0 B (I) f u V) A (t), 0 < t < T, a (T) = I Gf3 

The solution of the linear-quadratic problem (2.6), (2.4) shows that expression (1.3) is 
the Cauchy formula for the solution m(t)of the equation 

dn (f) = (B - DA,) mdt + LfA'N,-'dy (t), m (0) = 0 

The quantity / (up) = trD (T), where D (t) = M (L (t) - VI (t)) (5 (t) - n (t))‘, and the Riccati matrix 
equation holds for D(t). 
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3. Solution of the dual problem. TO construct the matrix u,,(t) we obtain the 
optimal-control problem (2.31, (2.4). Suppose first of all that ha T. Then, as follows 
from (2.4),the process a(s) =+((T,sf is also independent of the control a (Q Then the 
optimal control u*(t) = 0. Hence, in view of (1.3), (2.4) the optimal estimate n(T) and 
the estimation error f(uO) satisfy the relations 

m(T)=& T,<h 
T (3.1) 

Suppose now that h< T. It can be seen from (2.31 that in this case when SE [T-h, TJ 
the process c(s) is independent of the control and is determined by the relation a(s)=g(T,s), 

and when in [O, T-h] it depends on the control u(t) only when t E [h, Tl. Consequently, 
ug (t) = 0 when t E [O, h) , and the functional (2.4) can be represented in the form 

T 

J (u) = tr f S * (T, s) No (s) $’ (T, s) ds + a (0) Doa’ (0) + 
T-h 

T--h 

s a(s)No(s)a’(s)ds + 5 u(S).v~(S)U’(S)ds] 
* h 

(3.2) 

The solution of the problem of minimizing the functional (3.2) on trajectoriesofsystem 
(2.3) (see below) shows that uo(t) is the solution of the Fredholm integral equation 

T-h 

%+kh)=[R(T+- s u. ft + h) A (t + h) R (t, T) dt ] x 

A’(z$h)N;‘(t+h), ‘O<r,<T--h 

R (t, r) = Mz (t) x' (z) = 9 (t, 0) D&’ (T, 0) + 
min(t,r) 

f 3fh s)iv, (s)~'(G s)ds 
0, 

(3.3) 

(3.4) 

where (k(t,r) is the correlation matrix of the process x(t),deffned by virtue of (2.2)). 
The solution of Eq.(3.3), which defines the optimal estimate, exists and is unique. 

To derive Eq.13.3) we will use the necessary condition for optimallty /lo/, which is as 
follows. Suppose u,(t) is the optimal control of problem (2.31, (3.2). We will introduce 
the control 

Here v is an arbitrary constant matrix of the same dimensions as uO. Then, the necessary 
condition for optimality isthe non-negativity of the functional 

We will evaluate J, (4. Suppose a0 (s) and a,(s) are processes defined by relation 
(2.3) with the control u0 (0 and am respectively. Cm the basis of (2.3) we have 

+ fJ (Q - 1 WI = tr 1 be (0) + aa (0)) DN7e’ (0) i- 
++a 

5 

?+a 

0 
(a, (4 + &I (8) No (4 9; f*) A + 5 (DNl(4 v’ - % b) API (4 %’ (8)) ds] 

* 
I e 

4, (a) = + (a, (s) - a0 (d) = - + 
s 

(u - lb0 (1)) A (1) $ (L - h, 8) dl 
r 

Hence it follows that 

limp,(r)=-(fv--uo(T))d(r)*(~-h,~) 
9-o 

Consequently 
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J, (UJ = tr [(I; - 1lo (7)) N, (t) (v - 110 (7))’ -I- 2 (IIg (T) N, (r) - 
S (T) A’ (T)) (v - uo (T))‘] > 0 

T-h 

3 (T) = a.(O) D&’ (T - h, I)) + 1 a,, (.\) No (s) Q’ (T ~. h, s) ds 
” 

For this inequality to be correct for any r E lh, rl and an arbitrary constant matrix v 
it is necessary and sufficientthat the optimalcontrol have the form 

Ug (7) = s (z) A' (T) N,_' (t) (3.5) 

Substituting (2.3) with a (s) = cxO (s), LL (s) = Us into (3.5), and taking (3.4) into account, 
we obtain (3.3). 

Hence, the correctness of Eq.(3.3) for the function u,(1) is established. The existence 
of the solution of Eq.(3.3) follows from the existence of the function us(t) as the kernel 
in estimate (1.3). 

We will obtain a certain representation for uo(t). Consider the 

B (2'. z) = M (3 (2.) - m (2')) (5 (r) - m (t))' = R (T, T) - B, (T, T) 
B, (TV 4 

B, (T, 7) = Mm (T)z' (T), B, (T, z) = M (.z (T) - m (T)) m' (T) 

Since 

T-h 

&(T,Q= s uo 0 + h) A P+ h) R 0, ~1 df 

B,(T,z) = i4 [M(z(T)- m (T)/G,] m'(z) = 0 

from (3.3) it follows that the representation 

ug (T) = B (T, z - h) A (z) A',-' (T), h < r < T 

of the solution of Eq.(3.3) is correct provided that the solution of 

matrix 

- 

this equation is unique. 
We will prove the uniqueness of the solution of Eq.(3.3). Suppose Au(z) is the dif- 

ference between two different solutions of Eq.(3.3). Then 

T-h 

Ae(l.+h)+ 1 Au(t+h)A(t+h)R(t,r)dtA'(r+h)N;'~r+k)~=O 
II 

Multiplying this relation on the right by N,(tf h) Au'(z+ h) and then integrating with 
respect to TEIO,T - hl we obtain that the sum of the two integrals equals zero. Since they 
are both non-negative, each of them must be equal to zero. In particular, for almost all 

7 E Ih, Tl we have AU (7) NI (T) AU' (7) = 0. Hence, AU(T)= 0 almost everywhere is [h,?']. Consequently, 
the solution of Eq.(3.3) is unique. 

Hence, the optimal control of problem (2.3), (3.2) is zero when s~]O,hl, and when SE[~, 
T] it is a unique solution of Eq.(3.3). 

In certain cases the solution of Eq.(3.3) can be obtained in explicit form. Suppose, for 
example, that N, = 0, i.e. Eq.(l.l) does not contain random perturbations. We will seek a 
solution of Eq. (3.3) in the form 

a0 (t) = Q (T, O)Fq’ (t - h, 0)A’ (t)N,-’ (t) (3.6) 

TO determine the matrix F we will substitute (3.6) into (3.3). We obtain, taking (3.4) 
into account, when N, = 0, an equation whose solution is 

P = (Do-’ + Q)_’ (3.7) 
T--h 

Q= 1 V(t,O),~,(tfh)~(t,O)dt, A,=A’N;‘A 
II 

The optimal estimate for N, = 0 is determined by expression (1.3) with kernel (3.6)) 
(3.7). The corresponding error of the estimation is 

J (%) = tr [II, (T,O)& (T, 011 (3.8) 

The problem of the dependence of the estimation error on the value of the delay h in the 
observations is of interest. Since the measurments (1.2) in the interval IO, hl do not carry 
any information on process (l.l), the error of the estimation as a function of h does not 
decrease as h, OQh< T increases and is constant with respect to h when h> T. Eq.(3.8) 
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confirms this. In fact, it follows from this equation for a constant matrix A, that 

&I (tl,)/dh = tr IQ (T,O)F$' (T -h, O)A,@ (T - h, O)t%' (T, O)l> 0 

Note that in situations differing from (l.lt, (1.2), an increase in the delay h in the 
observation channel may lead to a reduction in J(uO), i.e. to an increase inthe estimation 

accuracy /7/. 

4, Numerical solution of the filtering problem. Different effective procedures 
for finding numerical solutions of Fredholm equations of the form (3.3) can be described in 
numerous handbooks (for example, /ll/). 

We will consdier the number solution of the problem of constructing an estimate that is 
optimal in the mean-square sense, for a partially observed process (X it), Y (t)), specified by 
the equations 

8’ (t) = 5 (t - h) + El’ (t): I (s) = 0, s < 0; h E IO, ‘fl (4.2) 

Here a and in@ are aribtrary constants, Z* is a Gaussian random quantity with zero mean 
and unit variance, and f*(t) and &(t) are standard Wiener processes, independent of one 
another and of z,, . 

Integrating (4.1) we obtain 

(4.3) 

Eq.(3.3) for system (4.31, (4.2) has the form 

T-h 

uo(r+h)=R(T, z)- i u,,(t+h)R(t, t)dt 

0 
(4.4) 

The correlation function R(t,r) is defined by relation (3.4) in which Do= 1,N, = oea 

while the function +(',s) from representations (2.21, depending on the sign of the coefficient 
a, is equal to 

Eq.(4.4) 
approximation 

Q v, 4 = 
ch1/;@ -s), h>O 

COSI/iT/((t-"), a<0 

was solved by the method of successive approximations. We used as the initial 
the analytical solution of Eq.(4.4) with cr,= 0 

T-h 

uo(1)=rlr(T,O)~(t--h,O)[I+ i ‘P~~,Wd~]-l, t E Ik Tl 

010 0 092 0,Y h 

Fig.1 Fig.2 Fig.3 

The calculations were carried out for constant T = V, and values of the coefficients 
d = -i,O, and 1. In Fig.1 we show graphs of the function u,(t) for te Ih, TJ,a,= 0.i fox dif- 
ferent values of h. In Fig.2 we show the estimation error J as a function of the delay h for 
a=0 and three values of oO: o0 = 0; o0 = O,i;o, = 0,4 (curves 2, 2 and 3 respectively). In 
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Fig.3 for uO= 0 and different values of h we show graphs of the auxiliary controlled process 
a (tl. t E IO, r1, which depends on the control only when TV 10, T - hl. The graphs are similar for 
the two other values of o$. 

Note of extraph&iori. The problem of extrapolation is to obtain the best estimate, in 
the mean-square sense, of the vector x( T,) at the instant Tl> T from measurements r/(t) in 
the interval O,(. t < T. This problem reduces to the filtering problem. For this we put 
A,(t)=A(t) when Ogt.<T and Ao(t) =0 when t>T. We will now consider the auxiliary 
problem of the filtering of the vector z(T,)(which satisfies Eq.(l.l) when O< t< T,) from 
the results of measurements (1.2) in the interval IO, T,], where in Eq.tl.2) instead of A (t) 
we have A, (t). Then, in view of the independence of x0, Eo, &, the solution of the auxiliary 
filtering problem will simultaneously also be a solution oftheinitial extrapolation problem. 
Hence, relations defining the solution of the extrapolation problem are obtained from the 
corresponding formulas of Sects.2 and 3 , everywhere in which T is replaced by Tl and A (t) by 
-4, 0). 
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